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The paper contains an analysis of the transmission of a pressure wave through a periodic grating
including the influence of the air viscosity. The system of equations in this case consists of the
compressible Navier–Stokes equations associated with no-slip boundary conditions on solid
surfaces. The problem is reduced to two hypersingular integral equations for determining the
velocity components along the slits. These equations are solved by using Galerkin’s method with
some special trial functions. The results can be applied in designing protective screens for miniature
microphones realized in the technology of micro-electro-mechanical systems~MEMS!. In this case,
the physical dimensions of the device are on the order of the viscous boundary layer so that the
viscosity cannot be neglected. The microfluidic model of the screen consists of a periodic array of
slits in a substrate. The analysis indicates that the openings in the screen should be on the order of
10mm in order to avoid excessive attenuation of the signal. ©2005 Acoustical Society of America.
@DOI: 10.1121/1.1882923#
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I. INTRODUCTION

The reflection and transmission of a scalar plane w
through a periodic grating is a classical problem of acoust
Thus, Lamb1 succeeded in obtaining analytical formulas f
the reflection and transmission coefficients in the lo
frequency range for normal incident waves; Miles2 obtained
a one-mode approximation for small screens, in the cas
oblique incidence. Achenbach and Li3 developed a method
that is appropriate for arbitrary frequencies and angles
incidence. They used a representation of the solution a
integral over the length of a screen. Finally, we mention
results in Ref. 4, where explicit analytical formulas are giv
for the reflection and transmission coefficients in one-mo
oblique incidence penetration.

The inclusion of viscous effects in acoustics is a subj
not very often approached. The book by Pierce5 contains a
chaper discussing the dissipative processes devoted e
cially to explain attenuation of sound waves. Davis and N
gem, in Ref. 6, have investigated the problem of diffracti
by a half plane studying the behavior of fluid velocity nea
diffracting edge. The same authors analyzed, in Ref. 7,
fraction of an acoustic plane wave by a circular aperture
viscous fluid.

The viscous dissipative processes are described b
constitutive relationship between shear stress and rat
shear involving the shear viscositym and the bulk viscosity
mB . The bulk viscosity takes into account the departure
the kinematic mode of molecular motion from mutual the
modynamic equilibrium. By assuming a Newtonian consti
tive relationship, the momentum equations yield the Navie
Stokes system corresponding to a compressible fluid. In
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case of isentropic flow and constant viscosity~m!, the system
decomposes into an acoustical~propagational! mode and a
vorticity ~viscous! mode. The vorticity mode dies out rapidl
with increasing distances from boundaries, interfaces,
sources. Therefore, in the bulk of the atmosphere, the ve
ity and the pressure fields are described mainly by the pro
gating mode.

A simple calculation shows that the viscous mode giv
along a solid boundary, a viscous boundary layer of thickn
tvisc5Am/(p f r) ~f denotes the frequency andr the density!5

which has the value 223mm at 100 Hz and 22.3mm at 10
KHz. In the case of miniature silicon microphones, realiz
in MEMS technology, the linear dimensions of the device a
of the order of 1 mm. Hence, the viscous boundary la
cannot be neglected anymore in determining the disturba
of the sound waves by the microphone parts. As an exam
we consider the influence of a protecting system, consis
of a plane surface containing a periodic system of para
slits ~a horizontal periodic grating!, placed in front of the
diaphragm. This analysis is important since we are interes
in protective surfaces having small holes, which will avo
the penetration of water and dust particles to the diaphra
surface. It is clear that for very narrow slits the transmiss
coefficient is small. Therefore, we have to find an optimu
dimension of the holes which enables the penetration of
sound and at the same time does not allow the penetratio
water and dust particles.

In Sec. III we give representation formulas for the pre
sure and velocity fields in the upper and lower half plan
The incoming wave is considered as a pressure wave c
acterized by the angleu0 . As the attenuation of the soun
waves in air is very small, we neglect it in the incomin
plane wave and in the propagating modes. This is why,
spite the viscous dissipation, we continue to use the Somm
feld condition for selecting the proper waves in each ca
The representation formulas for the scattered and transm

al
p-
l:
2761761/11/$22.50 © 2005 Acoustical Society of America
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pressures contain an infinite number of wave modes, e
with its cutoff frequency. At the cutoff frequency, a mod
converts from an evanescent mode into a propagating w
mode. At small frequences only the lower-order modes
propagating. As the frequency is increasing, more and m
evanescent modes convert to propagating modes. In the
of acoustical frequences in air, only the lowest mode
propagating. This is the case we are considering in this pa
The case when other modes are also propagating can be
lyzed similarly. By using the momentum equations we obt
representation formulas for velocities. These contain, bes
the above-discussed modes, some viscous~vorticity! modes
which are decaying exponentially with the distance to
perturbation sources.

Next, we consider as main unknown functions the v
locity components along the slits. The advantage, as c
pared with the approach in Ref. 3, where the unknown fu
tion is related to the pressure on the screens, is that the
integral equations are simpler. All the coefficients enter
into representation formulas can be determined in term
Fourier coefficients of the velocity components on the sl
Now, the condition of continuity of velocity and its norma
derivative along the slits furnishes the functional equatio
for solving the problem. There is one such equation for e
of the velocity components. As these equations contain s
divergent Fourier series, they can be interpreted prop
only within distribution theory. Further on, we succeeded
transforming the distributional equations into hypersingu
integral equations. The singular part of both equations is
same; the weak singular parts differ by a multiplicative co
stant and the regular parts contain continuous functions
sulting from summing some uniform convergent Fourier
ries.

In Sec. V we developed a method for solving the hyp
singular integral equations based on the representatio
solutions in terms of a basis of functions, given by so
Chebyshev functions, and using also the convenient form
the convolution equations in the spectral domain. With
Galerkin technique we succeeded in obtaining an infin
system of linear equations for each of the integral equatio
The systems have good computational properties. Thus
coefficients of the equations result from using the spec
properties of the singular operators, the FFT transform
some smooth functions~realized in fact by using the 2D
discrete cosine transform ofMATLAB !, and the summation o
some fast convergent infinite series. The finite sections of
final systems are well conditioned such that we need on
small number of terms to obtain a solution with good pre
sion.

Section VI contains some numerical results. We co
puted the transmission coefficient for certain geometries
portant in designing miniaturized microphones. We appl
the same mathematical technique to the classical~nonvis-
cous! acoustical periodic grating problem. The results a
also given in Sec. VI for comparison. We note that the n
merical results obtained in the nonviscous case coincide
those calculated by Ref. 4. The graphs show that for v
small slit width the influence of viscosity is very importan
2762 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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The graphs provided can be used in designing of mic
phones realized in MEMS technology.

Finally, in the Appendix we give the most importan
formulas used in calculation of the spectral form of singu
integral operators and also of the regular parts of the inte
equations.

II. THE EQUATIONS OF THE PROBLEM

A. Formulation of the problem

Let us consider the penetration of a pressure w
through the array of coplanar rigid screens located atz50 in
Fig. 1. The screens are infinitely long in they direction. The
opening between two neighboring screens is 2a and the pe-
riod of the grating isT5a1b. We denote byD1 the upper
half plane (z.0) and byD2 the half planez,0. The inci-
dent wave is located in the domainD1 and its propagation
vector makes an angleu0–p with the z axis.

There are two periodic phenomena in this problem: o
is associated with the acoustical incoming wave and
other one with the grating periodicity. To avoid possible co
fusions we associate a ‘‘* ’’ with the quantities related to the
acoustical incoming wave (k* is the spatial frequency wav
number of the plane incoming wave andv* its angular fre-
quency!. The ‘‘nonstarred’’ quantitiesT and v52p/T are
the spatial period of the grating and its corresponding spa
frequency, respectively.

B. The equations of the motion of a compressible
viscous fluid

The isentropic motion of a viscous fluid is described
the continuity equation

]r

]t
1¹•~rV!50, ~1!

and the momentum equation

rS ]

]t
1V•¹ DV1¹•s50. ~2!

Here, byV we denote velocity,r is density, and the stres
tensors has the components

s i j [s i j @P,V#5FP2S mB2
2

3
m D¹•VGd i j

2mS ]Vi

]xj
1

]Vj

]xi
D . ~3!

Also, m andmB are the shear and bulk viscosities5 andP the
pressure.

FIG. 1. The geometry of the problem.
Homentcovschi et al.: Viscous diffraction by a grating
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Also, in the case of isentropic flow the density is a fun
tion of pressure alone such that the state equation ca
expressed as

r5r~P!. ~4!

For a viscous fluid we have the nonslip boundary co
dition

V~x,t !50, ~5!

on any immobile solid surface.
In the case of inviscid~nonviscous! model of fluid, the

viscositiesm andmB have to be considered zero in~3!; also,
the boundary condition~5! is replaced by the nonpenetratio
condition

Vn~x,t !50, ~6!

stating the cancellation of normal component of velocity
any immobile solid surface.

Besides this, we will impose that all the propagati
perturbations, except for the incoming plane wave, are o
going waves~Sommerfeld radiation condition!.

C. The equations of the motion of a viscous fluid
in linear acoustic approximation

In the case where the coordinate system is chosen so
the unperturbed fluid is at rest, the first-order equations
scribing the motion of the gas can be written as8,5

1

c0
2

]

]t

p8

r0
1¹•v850, ~7!

]v8

]t
1¹Fp8

r0
2~n82n!¹•v8G2nDv850, ~8!

wherep8 and v8 denote the pressure and velocity perturb
tions, respectively, and

n5
m

r0
, n85

mB

r0
1

4m

3r0
,

are the kinematic viscosities.
We consider the case where all the physical variables

harmonic in time with the same angular velocity,v*
52p f . The case of general time dependence can be
tained, after analyzing each frequency separately, by Fou
superposition. In the case of simple harmonic oscillations
time, we shall write

$p8~x,t !,v8~x,t !%5$p~x!,v~x!%exp~2 iv* t !.

In this case the continuity equation~7! becomes

¹•v5
iv*

c0
2

p

r0
. ~9!

Also, the momentum equation can be written as

Dv1
iv*

n
v5

11~n2n8!iv* /c0
2

n
¹

p

r0
. ~10!

The relationships~9! and~10! give the equation for the pres
sure
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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@D1k* 2#p50. ~11!

Here, we have used the notations

k* 5
v*

Ac0
22 iv* n8

, Im~k* !<0.

Equations~10! and~11! yield the equation for velocity in the
form

@D1k* 2#FD1
iv*

n Gv50. ~12!

Equation~12! is in fact the product of two operators. Cons
quently, the solution can be written as a sum of two term
the first describes a propagation mode~called also the acous
tical mode! and the second is a diffusion mode driven
viscosity.

III. THE REPRESENTATION FORMULAS FOR THE
PRESSURE AND VELOCITY FIELDS

Let us consider now an incoming pressure plane wav
D1

p0~x,z!/r05c0
2 exp$ ik* ~x sinu02z cosu0!%. ~13!

It can be verified directly that~13! satisfies the pressur
equation ~11! and the corresponding velocity field isv0

5u0(x,z) x̂1w0(x,z) ẑ, where

u0~x,z!5 ik* c0
2d sinu0 exp$ ik* ~x sinu02z cosu0!%

w0~x,z!52 ik* c0
2d cosu0 exp$ ik* ~x sinu02z cosu0!%.

We have denoted

d5
11~n2n8!iv* /c0

2

iv* 2nk* 2
.

Then, we write

p~x,z!5H p0~x,z!1p1~x,z!, in D1

p2~x,z!, in D2,

u~x,z!5H u0~x,z!1u1~x,z!, in D1

u2~x,z!, in D2,

w~x,z!5H w0~x,z!1w1~x,z!, in D1

w2~x,z!, in D2.

The functionsp6(x,z) satisfy Eq.~11! in the corresponding
domainsD6 and the functionsu6(x,z), w6(x,z) are solu-
tions of Eq. ~10!. Since the array of scatterers is period
over the ox axis, the pressure and velocity fields can
written as

p6~x,z!5exp$ ik* x sinu0% p̃6~x,z!, ~14!

v6~x,z!5exp$ ik* x sinu0%ṽ
6~x,z!, ~15!

where p̃6(x,z) and ṽ6(x,z) are periodic functions with re-
spect tox

p̃6~x1T,z!5 p̃6~x,z!,

ṽ6~x1T,z!5 ṽ6~x,z!.
2763Homentcovschi et al.: Viscous diffraction by a grating
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Equation~11!, taking into consideration the periodicit
of the functionp̃6(x,z), gives

p6~x,z!/r05P0
6 exp$ ik* ~x sinu06z cosu0!%

1 (
nÞ0

Pn
6 exp~ iknx!exp~7r nz!, ~16!

where

kn5nv1k* sinu0 , v52p/T,

r n5Akn
22k* 2, Re~r n!.0.

Thus, the scattered pressure field consists of a supe
sition of an infinite number of wave modes. For small fr
quences@0,k* T/2,p/(12sinu0)# only the lowest-order
mode is propagating; all the other modes describe wa
which decay exponentially with the distance to the planz
50. In writing the solution~16! we considered also the Som
merfeld radiation condition. The constantsPn

6 will be detem-
ined by using the boundary conditions. In the case of
viscous fluid, these conditions are written by means of
locities.

To determine the representation formulas for the vel
ity field we use Eq.~10!, where we introduce the form~16!
for the pressure. Taking into consideration also the abo
mentioned periodicity results in

u6~x,z!5 (
n52`

`

un
6~x,z!,

w6~x,z!5 (
n52`

`

wn
6~x,z!,

where

u0
6~x,z!5 ik* sinu0dP0

6 exp$ ik* ~x sinu06z cosu0!%

1
H0

6

ik0
exp$ ik0x7q0z%,

w0
6~x,z!56 ik* cosu0dP0

6 exp$ ik* ~x sinu06z cosu0!%

6
H0

6

q0
exp$ ik0x7q0z%, ~17!

un
6~x,z!5

Hn
6

ikn
exp$ iknx7qnz%1 ikndPn

6 exp$ iknx7r nz%,

wn
6~x,z!56

Hn
6

qn
exp$ iknx7qnz%7r ndPn

6 exp$ iknx7r nz%.

~18!

The constantsHn
6 have to be determined by the bounda

conditions. We have also denoted

qn5Akn
22 iv* /n, Re~qn!.0.

We note that naturally the solution for velocity has be
decomposed into two parts: a propagating mode includ
theP terms and a diffusive mode, driven by viscosity, inclu
ing theH terms.
2764 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
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IV. THE HYPERSINGULAR INTEGRAL EQUATIONS
OF THE PROBLEM

Let us consider the functions

ũ~x![ũ2~x,0!5 (
n52`

`

ũn exp~ invx!, xPR ~19!

w̃~x![w̃2~x,0!5 (
n52`

`

w̃n exp~ invx!, xPR ~20!

where the Fourier coefficients are given by the formula

@ ũn ,w̃n#5
1

T E
2T/2

T/2

@ ũ~x!,w̃~x!#exp~2 invx!dx. ~21!

Since the velocity is vanishing on the rigid boundaries b
tween the openings, the functionsũ(x), w̃(x) are different
from zero only along the apertures. Due to periodicity, it
sufficient to determine them along the interval (2a,a).

The continuity of the velocity across the apertures a
screens yields also the relationships

u0~x,0!exp$2 ik* x sinu0%1ũ1~x,0!5ũ~x!, ~22!

w0~x,0!exp$2 ik* x sinu0%1w̃1~x,0!5w̃~x!, ~23!

valid along the whole axis. The relationships~19!–~23! allow
us to determine the constantsPn

6 and Hn
6 in terms of the

Fourier coefficientsũn and w̃n as

P0
15

q0w̃02 ik* ũ0 sinu0

iq0 cosu01k* sin2 u0

1

dk*

1
iq0 cosu02k* sin2 u0

iq0 cosu01k* sin2 u0

,

P0
25

2q0w̃02 ik* ũ0 sinu0

iq0 cosu01k* sin2 u0

1

dk*
,

H0
15 ik* ũ0 sinu01dk* 2~11P0

1!sin2 u0 ,
~24!

H0
25 ik* ũ0 sinu01dk* 2P0

2 sin2 u0 ,

Pn
65

6qnw̃n2 iknũn

d~kn
22r nqn!

, nÞ0,

Hn
65

6kn
2qnw̃n2 iknr nqnũn

kn
22r nqn

, nÞ0.

To obtain the equations satisfied by the functionsũ(x)
andw̃(x), we impose the condition of continuity of the no
mal derivative of velocity along the aperture

]u0~x,0!

]z
exp$2 ik* x sinu0%1

]ũ1~x,0!

]z

5
]ũ2~x,0!

]z
, xP~2a,a!, ~25!

]w0~x,0!

]z
exp$2 ik* x sinu0%1

]w̃1~x,0!

]z
5

]w̃2~x,0!

]z
,

xP~2a,a!. ~26!
Homentcovschi et al.: Viscous diffraction by a grating
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These ‘‘boundary relationships’’ will be associated with t
boundary conditions along the screens

ũ~x!50, xP~a,b!,

w̃~x!50, xP~a,b!.

Taking the second primitive~indefinite integral! with re-
spect to thex variable of the relationships~25! and ~26!
results in

a1ũ0

x2

2
1 (

nÞ0

r n

kn
22r nqn

ũn

~ inv!2
exp$ invx%

5
ad1

2T
x21c1x1c0 , xP~2a,a!, ~27!

a3w̃0

x2

2
1 (

nÞ0

qn

kn
22r nqn

w̃n

~ inv!2
exp$ invx%

5
ad3

2T
x21c18x1c08 , xP~2a,a!, ~28!

wherec1 , c0 , c18 , c08 are arbitrary integration constants an
the constantsa1 , a3 , d1 , d3 are given by formulas

a15
2 i cosu0

iq0 cosu01k* sin2 u0

,

a35
q0 /k*

iq0 cosu01k* sin2 u0

,

d15
c0

2dk* T sinu0 cosu0 /a

iq0 cosu01k* sin2 u0

,

d35
2 ic0

2dq0T cosu0 /a

iq0 cosu01k* sin2 u0

.

The asymptotic developments

r n

kn
22r nqn

5
unvu

A
1

k* sinu0

A

n

unu
1

C1

A

1

unvu

1OS 1

unvu2D ,

qn

kn
22r nqn

5
unvu

A
1

k* sinu0

A

n

unu
1

C3

A

1

unvu

1OS 1

unvu2D ,

where

A5
1

2 S k* 21
iv*

n D , B5
iv* k* 2

2An
,

C15B2
3k* 2

4
2

iv*

4n
, C35B2

k* 2

4
2

3iv*

4n
,

also prove true.
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
Since ũn are the Fourier coefficients of a continuou
function, we have alsoũn5o(n21) and consequently

U r n

kn
22r nqn

ũn

~ invx!2U,
const

n2
.

Hence, the infinite series in formula~27! is converging uni-
formly for xP@2a,a#. According to property~f! in Ref. 9
~or Ref. 10! the relationship~27! can be differentiated term
by term any number of times and the formulas obtained
way are valid as distributions~generalized functions!.

The second derivative of relationship~27! with respect
to thex variable can be written as

1

A

d2

dx2 (
nÞ0

unvuũn

~ inv!2
exp$ invx%

1
k* sinu0

A

d2

dx2 (
nÞ0

n

unu
ũn

~ inv!2
exp$ invx%

1
C1

A (
nÞ0

ũn

unvu
exp$ invx%1a1ũ0

1 (
nÞ0

F r n

kn
22r nqn

2
unvu

A
2

k* sinu0

A

n

unu

2
C1

A

1

unvuG ũn exp$ invx%5
ad1

T
, xP~2a,a!. ~29!

Since the last infinite series in this relationship is uniform
convergent, its sum is a smooth function ofx along the in-
terval (2a,a). Let us denote

K1
R~x!5a11 (

nÞ0
F r n

kn
22r nqn

2
unvu

A
2

k* sinu0

A

n

unu

2
C1

A

1

unvuGexp$ invx%,

K3
R~x!5a31 (

nÞ0
F qn

kn
22r nqn

2
unvu

A
2

k* sinu0

A

n

unu

2
C3

A

1

unvuGexp$ invx%.

Introducing the expression of the Fourier coefficients,
obtain

IR~x![a1ũ01 (
nÞ0

F r n

kn
22r nqn

2
unvu

A
2

k* sinu0

A

n

unu

2
C1

A

1

unvuG ũn exp$ invx%

5
1

T E
2a

a

ũ~x8!K1
R~x2x8!dx8.

The other infinite series will give the singular terms of E
~29!. We analyze now each of the singular terms. Thus, s
stituting again the Fourier coefficients results in
2765Homentcovschi et al.: Viscous diffraction by a grating
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ne
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I3[ (
nÞ0

ũn

unvu
exp$ invx%

5 (
nÞ0

1

T E
2a

1a

ũ~x8!
exp$ inv~x2x8!%

unvu
dx8

5
1

p E
2a

1a

ũ~x8! (
n51

`
cos@nv~x2x8!#

n
dx8

52
1

p E
2a

1a

ũ~x8!logU2 sin
v~x2x8!

2 Udx8. ~30!

Here, the formula

(
n51

`
cos~nvx!

n
52 logU2 sin

vx

2 U,
given in Ref. 11~formula 1.442! or Ref. 12 has been used
Therefore

I352
1

p E
2a

1a

ũ~x8!logUFsin
v~x2x8!

2 GFv~x2x8!

2 G21Udx8

2
1

p E
2a

1a

ũ~x8!loguv~x2x8!udx8. ~31!

The first integral in this relationship is regular and the seco
one has a weak~logarithmic! singularity forx85x.

Similarly, the second singular term in Eq.~29! becomes

I2[
d2

dx2 (
nÞ0

n

unu
ũn

~ inv!2
exp$ invx%

52
d

dx

i

p E
2a

1a

ũ~x8! (
n51

`
cos@nv~x2x8!#

n
dx8.

Hence

I2~x!5 i
dI3

dx
5

i

p E
2a

1a

ũ~x8!Fv2 cot
v~x2x8!

2
2

1

x2x8Gdx8

1
i

p

d

dx E2a

1a

ũ~x8!loguv~x2x8!udx8. ~32!

Again, the first integral in formula~32! is regular. The sec-
ond one can be written as

i

p

d

dx E2a

1a

ũ~x8!loguv~x2x8!udx85
i

p E
2a

1a

ũ~x8!
dx8

x2x8
,

~33!

and represents a finite part~or principal value! integral ~see
Refs. 13, 9, and 14!. Finally, the second term in Eq.~29! has
the form

I2~x!5
i

p E
2a

1a

ũ~x8!Fv2 cot
v~x2x8!

2
2

1

x2x8Gdx8

1
i

p E
2a

1a

ũ~x8!
dx8

x2x8
. ~34!
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For the first singular term in~29!, performing similar
transformations results in

I1[
d2

dx2 (
nÞ0

unvuũn

~ inv!2
exp$ invx%52

d2I3~x!

dx2

5
d2

dx2

1

p E
2a

1a

ũ~x8!loguv~x2x8!udx8

1
d2

dx2

1

p E
2a

1a

ũ~x8!logUFsin
v~x2x8!

2 G
3Fv~x2x8!

2 G21Udx8.

The last integral in this formula is regular and the other o
can be written as a finite part. Finally, the first singular te
becomes

I152
1

p E
2a

1a

ũ~x8!Fv2

4
sin22

v~x2x8!

2

2
1

~x2x8!2Gdx82
1

p E
2a

1a

ũ~x8!
dx8

~x2x8!2
.

In this formula

E
2a

1a

ũ~x8!
dx8

~x2x8!2
52

d

dx E2a

1a

ũ~x8!
dx8

x2x8

52
d2

dx2 E2a

1a

ũ~x8!loguv~x2x8!udx,

~35!

is a finite part integral~see Refs. 13, 15, and 14!.
Bringing together all the above transformations, Eq.~29!

becomes

2
1

pA E
2a

1a

ũ~x8!
dx8

~x2x8!2
1

ik* sinu0

pA E
2a

1a

ũ~x8!
dx8

x2x8

2
C1

pA E
2a

1a

ũ~x8!loguv~x2x8!udx8

1
1

T E
2a

a

ũ~x8!K1
R~x2x8!dx82

1

pA E
2a

1a

ũ~x8!

3Fv2

4
sin22

v~x2x8!

2
2

1

~x2x8!2Gdx8

1
ik* sinu0

pA E
2a

1a

ũ~x8!Fv2 cot
v~x2x8!

2
2

1

x2x8Gdx8

2
C1

pA E
2a

1a

ũ~x8!logUFsin
v~x2x8!

2 GFv~x2x8!

2 G21Udx8

5
ad1

T
, xP~2a,a!. ~36!
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Performing the same transformations with Eq.~28!, a
similar equation results for the functionw̃(x)

2
1

pA E
2a

1a

w̃~x8!
dx8

~x2x8!2
1

ik* sinu0

pA E
2a

1a

w̃~x8!
dx8

x2x8

2
C3

pA E
2a

1a

w̃~x8!loguv~x2x8!udx8

1
1

T E
2a

a

w̃~x8!K3
R~x2x8!dx82

1

pA E
2a

1a

w̃~x8!

3Fv2

4
sin22

v~x2x8!

2
2

1

~x2x8!2Gdx8

1
ik* sinu0

pA E
2a

1a

w̃~x8!Fv2 cot
v~x2x8!

2
2

1

x2x8Gdx8

2
C3

pA E
2a

1a

w̃~x8!logUFsin
v~x2x8!

2 GFv~x2x8!

2 G21Udx8

5
ad3

T
, xP~2a,a!. ~37!

Equations~36! and ~37! will be solved in Sec. V by using a
Galerkin-type method.

Since there are numerical methods tailored specially
finite-part integrals, we shall write also a different form
these equations. So, by using the finite-part definition
more general functions13 and Ref. 16, pp. 64–66, problem 5
Eqs.~36! and ~37! can be written as

2
v

2A E
2a

a ũ~x8!dx8

sin2~v~x2x8!/2!

1
ik* sinu0

A E
2a

a

ũ~x8!cot
v~x2x8!

2
dx8

2
2C1

vA E
2a

a

ũ~x8!logU2 sin
v~x2x8!

2 Udx8

1E
2a

a

ũ~x8!K1
R~x2x8!dx85ad1 ~38!

2
v

2A E
2a

a w̃~x8!dx8

sin2~v~x2x8!/2!

1
ik* sinu0

A E
2a

a

w̃~x8!cot
v~x2x8!

2
dx8

2
2C3

vA E
2a

a

w̃~x8!logU2 sin
v~x2x8!

2 Udx8

1E
2a

a

w̃~x8!K3
R~x2x8!dx85ad3 . ~39!

Notice that both integral equations have the same sin
lar part. As the solutions are satisfying the conditionsũ
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005
r

r

u-

(6a)5w̃(6a)50 the equations can be transformed in
integro-differential equations with Cauchy-type singularitie
Numerical methods for solving such equations were dev
oped by Multhopp-Kalandiya,17 Kutt,18 and Dragos.19

Remark 1. These types of singular integral equation
involving second-order ‘‘poles’’ arise naturally in variou
physical problems.14,15,20,21They are called ‘‘integral equa-
tions with strong singularities’’ in some papers and ‘‘hype
singular integral equations’’ in other papers. Since in th
field of wave propagation and acoustics the last denomi
tion is used more often, we adopted it also in the pres
work.

Finally, we note that using a Rayleigh-type represen
tion of velocity field, by means of a potential functio
f(x,z) and a stream functionc(x,z) the solution of the
viscous diffraction problem reduces to the same hypersin
lar integral equations~38! and ~39!. Hence, these equation
characterize the viscous diffraction problem by a grating a
are not the result of a particular approach.

V. REDUCTION OF THE HYPERSINGULAR INTEGRAL
EQUATIONS TO INFINITE SYSTEMS
OF ALGEBRAIC EQUATIONS

Instead of using collocation methods for approximati
the solution of the singular integral equations~38! and ~39!,
we prefer a Galerkin-type approach based on a special b
of the corresponding Hilbert space. The method takes adv
tage of the form of integral equations by using som
spectral-type relationships, fast Fourier transform of so
smooth function, and summation of rapid convergent infin
series.

A. Galerkin’s method for solving the integral
equations

In the spaceH1/2(2a,a) of functions continuous on
@2a,a# with derivatives having singularities of order 1/2
extremities, we consider the basis

H sinS n arccos
x

aD J , n51,2,... .

We represent the functionũ(x) as

ũ~x!5 (
m51

`

um sinS m arccos
x

aD .

Equation~36! becomes
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a-
(
m51

`

umH 2
2C1

vA E
2a

1a

sin~mu8!loguv~x2x8!udx8

1
2ik* sinu0

vA E
2a

1a sin~mu8!dx8

x2x8

22

vA E
2a

1a sin~mu8!dx8

~x2x8!2

2
2

vA E
2a

1a

sin~mu8!Fv2

4
sin22

v~x2x8!

2

2
1

~x2x8!2Gdx81
2ik* sinu0

vA E
2a

1a

sin~mu8!

3Fv2 cot
v~x2x8!

2
2

1

x2x8Gdx8

1E
2a

a

sin~mu8!K1
R~x2x8!dx8

2
2C1

vA E
2a

1a

sin~mu8!logUFsin
v~x2x8!

2 G
3Fv~x2x8!

2 G21Udx85ad1 , xP~2a,a!,

where we have denotedu85arccos(x8/a).
Applying theGalerkin’s methodresults in

(
m51

`

@Spm
0 1C1Ŝpm

0 #um1 (
m51

`

@Spm
R 1C1Ŝpm

R 1Rpm
~1!#um

5
d1

2p
dp,1 , p51,2,... .

The singular terms are

Spm
0 5

22

va2A

1

p2 E0

pE
0

p dS

~cosu2cosu8!2

1
2ik* sinu0

vaA

1

p2 E0

pE
0

p dS

cosu2cosu8
,

Ŝpm
0 52

2

vA

1

p2 E0

pE
0

p

logucosu2cosu8udS,

and the regular part contains the terms

Spm
R 5

1

p2 E0

pE
0

pH 2
v

2A F 1

sin2 Z
2

1

Z2G
1

ik* sinu0

A FcotZ2
1

ZG J dS, ~40!

Ŝpm
R 52

2

vA

1

p2 E0

pE
0

p

logUsinZ

Z UdS,

~41!

Rpm
~1!5

1

a2p2 E2a

a E
2a

a

sin~mu8!sin~pu!K1
R~x2x8!dx8 dx.

We have denotedu5arccos(x/a), and also
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dS5sin~mu8!sin~pu!sinu8 sinudu du8,

Z5
va

2
~cosu2cosu8!.

Using formulas given in the Appendix results in

Spm
0 5

m

va2A
dp,m1

ik* sinu0

2vaA
~dp,m112dp11,m! ~42!

Ŝpm
0 5

1

4vA H ~dp,m2dp,m12!/~m11!

1~dp,m2dp12,m!/~m21!, mÞ1

~dp,12dp,3!/222 log~va/2!dp,1 , m51

,

~43!

Rpm
~1!5

a1

4
dp,1dm,11 i p2mmp(

n51

`
Jp~anv!Jm~anv!

~anv!2

3F r n

kn
22r nqn

1~21!p1m
r 2n

k2n
2 2r 2nq2n

2
11~21!p1m

A S nv1
C1

nv D
2

12~21!p1m

A
k* sinu0G . ~44!

Finally, we obtain the infinite system of algebraic equ
tions for determining the coefficientsun

(
m51

`

@Spm
0 1C1Ŝpm

0 1Spm
R 1C1Ŝpm

R 1Rpm
~1!#um5

d1

2p
dp,1 ,

p51,2,... . ~45!

Similarly, we write

w̃~x!5 (
m51

`

wm sinS m arccos
x

aD ,

and the integral equation~39! yields the infinite system of
algebraic equations for the coefficientswm

(
m51

`

@Spm
0 1C3Ŝpm

0 1Spm
R 1C3Ŝpm

R 1Rpm
~3!#um5

d3

2p
dp,1 ,

p51,2,... . ~46!

The coefficientsRpm
(3) have the expression

Rpm
~3!5

a3

4
dp,1dm,11 i p2mmp(

n51

`
Jp~anv!Jm~anv!

~anv!2

3F qn

kn
22r nqn

1~21!p1m
q2n

k2n
2 2r 2nq2n

2
11~21!p1m

A S nv1
C3

nv D
2

12~21!p1m

A
k* sinu0G. ~47!
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B. Numerical realization of the method

The systems of linear equations~45! and~46! have good
properties from a computational point of view. Thus, the c
efficientsSpm

0 , Ŝpm
0 are given by explicit relationships~42!

and ~43!. The coefficientsSpm
R , Ŝpm

R are expressed by 2D
cosine Fourier transforms. The integrands in formulas~40!
and ~41! are smooth functions such that these integrals
be computed efficiently by using the 2D discrete cos
transform function ofMATLAB . Finally, the coefficientsRpm

(1) ,
Rpm

(3) can be obtained directly by summing the infinite ser
in formulas~44! and~47!. By subtracting several terms, an
summing them separately, we have transformed the in
infinite series into rapid convergent series.

In fact, by the approch used in the previous section,
have turned the convolution operators in Fourier transfo
domain; this transform converts the convolution to a prod
‘‘quasidiagonalizing’’ the operators. Thus, the strongly sing
lar operator contributes only on the main diagonal of
system, the principal value integral has contributions on
two diagonals next to the principal one, and the term c
taining the logarithmic singularity contributes in the syste
to coefficients lying on the principal diagonal and the fo
closer to it. This is why the finite sections of the resulti
infinite systems of linear equations have relatively low co
dition numbers and the series giving the functionsũ(x),
w̃(x) are rapidly convergent.

VI. SOUND TRANSMISSION FACTOR. NUMERICAL
RESULTS

The important element in this analysis is the modulut
of thesound transmission factor,22 t5uP0

2/c0
2u, which shows

‘‘how much’’ of the incoming plane wave is passing throug
the grating. Thus, once the solutions of the systems~45! and
~46! are determined the functionsũ(x), w̃(x) can be intro-
duced in formula~21! to obtain the corresponding Fourie
coefficients. Finally, the formula~24! provides the value of
the modulus of sound transmission factor as

t[uP0
2/c0

2u5U q0w̃01 ik* ũ0 sinu0

iq0 cosu01k* sin2 u0

ap

2~a1b!c0
2dk*

U .
~48!

In Fig. 2~a! we have plotted the modulust of sound
transmission factor versus slit widthd for various values of
the periodic spacingw by including the influence of viscos
ity. All the calculations assumed a value ofp/4 for the angle
u0 . In Fig. 2~b! the same problem was solved for the ca
where the viscosity of the air is neglected. It is very cle
that, especially for very narrow slits, the viscosity of the
causes significant attenuation of the transmission wave.
results of Fig. 2~b! agree very well~the first three digits are
the same! with those obtained by using the formulas pr
vided in Refs. 3 and 4. Figure 3 shows again the depende
of modulust of sound transmission factor upond for differ-
ent values of the incidence angleu0 .

These results indicate that, in a simplified model of t
screen, treated as a periodic array of slits in a substrate
openings in the screen should be on the order of at leas
mm in order to avoid excessive attenuation of the signal.
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FIG. 2. ~a! Modulus t of sound transmission factor versus slits’ width fo
periodic spacingw525, 50, 100, and 200mm, f 520 KHz, and incidence
angleu05p/4. The viscous case.~b! Modulust of sound transmission facto
versus slits’ width for periodic spacingw525, 50, 100, and 200mm, f
520 KHz, and incidence angleu05p/4. The nonviscous case.

FIG. 3. Modulust of sound transmission factor versus slits’ widthd for w
5100mm, f 520 KHz, and incidence anglesu055, 45, 70, and 85 deg.
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APPENDIX: SOME DEFINITE INTEGRALS

In the following, we evaluate some integrals used in S
IV. Starting with the formula23,24

2
1

p E
21

1 cos~n arccosx8!

A12x82
logux2x8udx8

5H cos~n arccosx!/n, n>1

log 2, n50
, ~A1!

we can write also

2
1

p E
21

1

sin~n arccosx8!logux2x8udx8

5H cos~n21!u

2~n21!
2

cos~n11!u

2~n11!
, n.1

log 2

2
2

cos~2u!

4
, n51

, ~A2!

whereu5arccosx. The derivatives of relation~A2!, taking
into consideration the definitions~33! and ~35!, give

1

p E
21

1 sin~n arccosx8!

x2x8
dx85cos~nu!, n>1, ~A3!

2
1

p E
21

1 sin~n arccosx8!

~x2x8!2
dx85n

sin~nu!

sinu
. ~A4!

The change of integration variablex85cosu8 in the formulas
~A2!, ~A3!, and~A4! gives

2
1

p E
0

p

sin~nu8!sinu8 logucosu2cosu8udu8

5H cos~n21!u

2~n21!
2

cos~n11!u

2~n11!
, n.1

log 2

2
2

cos~2u!

4
, n51

, ~A5!

1

p E
0

p sin~nu8!sinu8

cosu2cosu8
du85cos~nu!, n>1, ~A6!

2
1

p E
0

p sin~nu8!sinu8

~cosu2cosu8!2
du85n

sin~nu!

sinu
, n>1, ~A7!

the last two integrals being considered singular~finite-part!
integrals.

For the last integral we consider the generating funct
of Bessel’s functions

expH z

2 S w2
1

wD J 5 (
n52`

`

Jn~z!wn,

and takew5 i exp$iw%. This results in
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1

.

n

exp$ iz cosw%5 (
n52`

`

Jn~z!i n exp$ inw%.

Using the orthogonality relationship of the complex exp
nentials results in

E
0

p

exp$ iz cosw%cos~mw!dw5p i mJm~z!. ~A8!

Then, we have

E
2a

a

sinS p arccos
x

aDexp$ invx%dx

5aE
0

p

sin~pu!sinu exp$ inv cosu%du,

and, using Eq.~A8! and some properties of Bessel’s fun
tions, we finally obtain the formula

E
2a

a

sinS p arccos
x

aDexp$ invx%dx5p i p21
p

nv
Jp~anv!.

~A9!
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