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The paper contains an analysis of the transmission of a pressure wave through a periodic grating
including the influence of the air viscosity. The system of equations in this case consists of the
compressible Navier—Stokes equations associated with no-slip boundary conditions on solid
surfaces. The problem is reduced to two hypersingular integral equations for determining the
velocity components along the slits. These equations are solved by using Galerkin’s method with
some special trial functions. The results can be applied in designing protective screens for miniature
microphones realized in the technology of micro-electro-mechanical sy$k8EMS). In this case,

the physical dimensions of the device are on the order of the viscous boundary layer so that the
viscosity cannot be neglected. The microfluidic model of the screen consists of a periodic array of
slits in a substrate. The analysis indicates that the openings in the screen should be on the order of
10 um in order to avoid excessive attenuation of the signal.2@5 Acoustical Society of America.
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I. INTRODUCTION case of isentropic flow and constant viscosjiy, the system

) o decomposes into an acoustidgropagational mode and a

The reflection and transmission of a scalar plane wavg,,icity (viscous mode. The vorticity mode dies out rapidly

through a periodic grating is a classical problem of acousticSyjth increasing distances from boundaries, interfaces, and
Thus, Lam_B succeeded in obtaining analytical formulas for g, rces Therefore, in the bulk of the atmosphere, the veloc-
the reflection and transmission coefficients in the 10w, o0 the pressure fields are described mainly by the propa-
frequency range for normal incident waves; Mflebtained ating mode
a one-mode approximation for small screens, in the case ng A simple calculation shows that the viscous mode gives,

. . . 3
oblique incidence. Achenbach and”ldeveloped a method long a solid boundary, a viscous boundary layer of thickness

that is appropriate for arbitrary frequencies and angles of = ———— :
incidence. They used a representation of the solution as af;'sc ul(wtp) (f denotes the frequency apdhe density

which has the value 22am at 100 Hz and 22.2um at 10

mtegraI. over the length of a screen. I_:lnally, we menﬂoq theKHz. In the case of miniature silicon microphones, realized
results in Ref. 4, where explicit analytical formulas are given.

. o . . in MEMS technology, the linear dimensions of the device are
for the reflection and transmission coefficients in one-mode .
. C : of the order of 1 mm. Hence, the viscous boundary layer
oblique incidence penetration. . - .
. . . , . . _cannot be neglected anymore in determining the disturbance
The inclusion of viscous effects in acoustics is a subjec

not very often approached. The book by Piércentains a of the sound waves by the microphone parts. As an example,

chaper discussing the dissipative processes devoted esp e consider the influence_ qf a proteptiqg system, consisting
cially to explain attenuation of sound waves. Davis and Na>! @ plane _surface C‘?”“”?'”'”g a periodic s_,ystem of parallel
gem, in Ref. 6, have investigated the problem of diffractionSI_ItS (a horlzontal per|o_d|(_: gratlr)g plac_ed in front Qf the

by a half plane studying the behavior of fluid velocity near a_dlaphragnj. This analysis 'S Important since we are mteres_ted
diffracting edge. The same authors analyzed, in Ref. 7, dif™" protect|ve. surfaces having small hqles, which W.'" avoid
fraction of an acoustic plane wave by a circular aperture in éhe penetrqnon of water and dust pa”'c'?s o the dlap_hra_\gm
viscous fluid. surface. It is clear that for very narrow slits the transmission

The viscous dissipative processes are described by oeff|C|_ent lsfsrr]nalrll. ;I'hererl:prre]:, WebTavehto find an thlmfurrr:
constitutive relationship between shear stress and rate GfMmension of the holes which enables the penetration of the

shear involving the shear viscosityand the bulk viscosity sound and at the same time does not allow the penetration of
ug. The bulk viscosity takes into account the departure ofVater and dust particles. ,

the kinematic mode of molecular motion from mutual ther- ' Sec. lll we give representation formulas for the pres-
modynamic equilibrium. By assuming a Newtonian constitu-Suré and velocity fields in the upper and lower half planes.
tive relationship, the momentum equations yield the Navier— N€ incoming wave is considered as a pressure wave char-

Stokes system corresponding to a compressible fluid. In th@cterized by the anglé,. As the attenuation of the sound
waves in air is very small, we neglect it in the incoming

) _ o _ _ Elane wave and in the propagating modes. This is why, de-
Perr_na_nent address. Polytechmc_a University & Institute of Mathematical pite the viscous dissipation, we continue to use the Sommer-
Statistics and Applied Mathematics of Romanian Academy, Caleal3 Sep:- " . .
tembrie #13, RO-76100, Bucharest, Romania. Electronic mail:feId condition for selecting the proper waves in each case.
homentco@binghamton.edu The representation formulas for the scattered and transmited
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pressures contain an infinite number of wave modes, each
with its cutoff frequency. At the cutoff frequency, a mode
converts from an evanescent mode into a propagating wave
mode. At small frequences only the lower-order modes are k D

propagating. As the frequency is increasing, more and more al a b

evanescent modes convert to propagating modes. In the case 4

of acoustical frequences in air, only the lowest mode is w d D

propagating. This is the case we are considering in this paper.

The case when other modes are also propagating can be ana- FIG. 1. The geometry of the problem.

lyzed similarly. By using the momentum equations we obtain

representation formulas for velocities. These contain, besideEn® graphs provided can be used in designing of micro-
the above-discussed modes, some visdwosticity) modes ~ Phones realized in MEMS technology.

which are decaying exponentially with the distance to the ~ Finally, in the Appendix we give the most important
perturbation sources. formulas used in calculation of the spectral form of singular

Next. we consider as main unknown functions the ve-integral operators and also of the regular parts of the integral

locity components along the slits. The advantage, as conffduations.
pared with the approach in Ref. 3, where the unknown funciI THE EQUATIONS OF THE PROBLEM
tion is related to the pressure on the screens, is that the final
integral equations are simpler. All the coefficients enteringA. Formulation of the problem

into representation formulas can be determined in terms of Let us consider the penetration of a pressure wave

Fourier coefficients of the velocity components on the S”tsthrough the array of coplanar rigid screens locatezi-a in
Now, the condition of continuity of velocity and its normal Fig. 1. The screens are infinitely long in thelirection. The
derivative along the slits furnishes the functional equation%pening between two neighboring screensasahd the pe-
for solving the problem. There is one such equation for eachiqq of the grating isT=a+b. We denote byD" the upper

of the velocity components. As these equations contain somgg)f plane ¢>0) and byD~ the half planez<0. The inci-
divergent Fourier series, they can be interpreted properlyent wave is located in the domal™ and its propagation
Only within distribution theory. Further on, we succeeded invector makes an angl%_fn- with the z axis.

transforming the distributional equations into hypersingular  There are two periodic phenomena in this problem: one
integral equations. The singular part of both equations is thgs associated with the acoustical incoming wave and the
same; the weak singular parts differ by a multiplicative con-other one with the grating periodicity. To avoid possible con-
stant and the regular parts contain continuous functions refusions we associate a " with the quantities related to the
sulting from summing some uniform convergent Fourier se-acoustical incoming wavekt is the spatial frequency wave
ries. number of the plane incoming wave and its angular fre-

In Sec. V we developed a method for solving the hyper-quency. The “nonstarred” quantitiesT and w=2#/T are
singular integral equations based on the representation diie spatial period of the grating and its corresponding spatial
solutions in terms of a basis of functions, given by somefrequency, respectively.

Chebyshev functions, and using also the convenient form of

the convolution equations in the spectral domain. With aB. The equations of the motion of a compressible

Galerkin technique we succeeded in obtaining an infiniteviscous fluid

system of linear equations for each of the integral equations.  The isentropic motion of a viscous fluid is described by
The systems have good computational properties. Thus, thie continuity equation

coefficients of the equations result from using the spectral

properties of the singular operators, the FFT transform of a—p+V~(pV)=0 1)
some smooth functiongrealized in fact by using the 2D ot ’

discrete cosine transform ofaTLAB ), and the summation of ang the momentum equation

some fast convergent infinite series. The finite sections of the

final systems are well conditioned such that we need only a P i+V-V)V+V-o=O. )
small number of terms to obtain a solution with good preci- gt
sion. Here, byV we denote velocityp is density, and the stress

Section VI contains some numerical results. We coM+ensorg has the components
puted the transmission coefficient for certain geometries im- )
portant in designing .mlnlaturlzgd microphones. We apphed UijEUij[PaV]z[P_(MB_ —M)VV}%
the same mathematical technique to the classicahvis- 3
coug acoustical periodic grating problem. The results are N oV
also given in Sec. VI for comparison. We note that the nu- —M(—I J),
merical results obtained in the nonviscous case coincide with
those calculated by Ref. 4. The graphs show that for venAlso, x and ug are the shear and bulk viscosifiemdP the
small slit width the influence of viscosity is very important. pressure.

()

+
an (9Xi
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Also, in the case of isentropic flow the density is a func- [A+k*2]p=0. (11
tion of pressure alone such that the state equation can

b .
expressed as Isere, we have used the notations

*

p=p(P). (4) * _ w _ *) <
k¥ = ———, Im(k*)<0,
For a viscous fluid we have the nonslip boundary con- VCo—lw™ v
dition Equations(10) and(11) yield the equation for velocity in the
V(x,t)=0, (5 form
on any immobile solid surface. 1* 21 A fo™ |
In the case of inviscidnonviscoug model of fluid, the [A+kEe]A v |V 0. (12

viscositiesu and ug have to be considered zero (8); also,
the boundary conditioib) is replaced by the nonpenetration
condition

Equation(12) is in fact the product of two operators. Conse-
quently, the solution can be written as a sum of two terms:
the first describes a propagation mddelled also the acous-

V,(x,t)=0, (6) tical mode and the second is a diffusion mode driven by

stating the cancellation of normal component of velocity onV'SCOSIty'

any immobile solid surface.
Besides this, we will impose that all the propagating)j|, THE REPRESENTATION FORMULAS FOR THE
perturbations, except for the incoming plane wave, are oUtpPRESSURE AND VELOCITY EIELDS

going waves(Sommerfeld radiation condition _ _ . .
Let us consider now an incoming pressure plane wave in

D+
C. The equations of the motion of a viscous fluid pO(X'Z)/poz CS exp{ik* (x sin§y—z cosby)}. (13

in linear acoustic approximation - ) o
It can be verified directly tha{l13) satisfies the pressure

In the case where the coordinate system is chosen so thggyation (11) and the corresponding velocity field i
the unperturbed fluid is at rest, the first-order equations de=,0(x 7)x+w0(x,z)2, where

scribing the motion of the gas can be writtefas o ) )
u®(x,z) =ik* c§d sin f, exp{ik* (x sin §y—z cosf)}

19p
;EP—OJer’:O, (7 wO(x,z)=—ik*c36 cosb, exp{ik* (x sin 6, —z cosby)}.
0
We have denoted
, p’ ! ! !
W—i_v p—o—(v —V)V-v —vAV' =0, ®) 5 1+ (v—v")iw*/c}
i 2
wherep’ andv’ denote the pressure and velocity perturba- T —vk*
tions, respectively, and Then, we write
I , Me | Au p%(x,2)+p*(x,2), in D*
v=—, V=—+3—, p(x,z)= _ . —
Po Po Po P~ (X,2), in D
are the kinematic viscosities. 0 + . n
u-(x,z)+u"(x,z), in 7D
We consider the case where all the physical variables are  y(x,z) :[ ( z (x.2) . .,
harmonic in time with the same angular velocity* u=(x,2), in D

=2mf. The case of general time dependence can be ob-

. : _ wo(x,z)+w'(x,z), in D*
tained, after analyzing each frequency separately, by Fourier w(x,z)=

superposition. In the case of simple harmonic oscillations in W (x,2), in D™
time, we shall write The functionsp©(x,z) satisfy Eq.(11) in the corresponding
' ' _ . domainsD* and the functionsi®(x,z), w*(x,z) are solu-
X, 1),V (X, 1)} ={p(Xx),v(X) }exp( —iw*t). ) , . .
{.p (). v'( )}. {F.J( )V ).} i) tions of Eq.(10). Since the array of scatterers is periodic
In this case the continuity equatidi) becomes over theox axis, the pressure and velocity fields can be
A written as
iw* p
Vev= 2 po’ ©) P~ (x,2) =exp{ik*x sin 6} p~(X,2), (14
0
V= (X,z) =exp{ik* x sin6p}V=(X,2), (15

Also, the momentum equation can be written as

i0*  1+(v—1)iw*/c2_p wherep©(x,z) andVv*(x,z) are periodic functions with re-

Av+ v V—. (100  spect tox
v v Po . .
- + T! = - L 1
The relationship$9) and(10) give the equation for the pres- P~ (x 2)=p~(x.2)
sure VE(x+T,2)=V"(X,2).
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Equation(11), taking into consideration the periodicity V. THE HYPERSINGULAR INTEGRAL EQUATIONS

of the functionp™(x,z), gives OF THE PROBLEM
P=(X,2)/po=Pg exp{ik* (x sinfy+zcosby)} Let us consider the functions
+ 2 Pyexplikpx)exp(Trez),  (16) T0=U"(x,0= > Tnexpinwx), xeR (19
n#0 n=—o
where ”

WX)=W"(x,0= > Wyexpinwx), xeR (20
K,=nw+k*sinf,, w=27/T, n=—ow

where the Fourier coefficients are given by the formula
ro=VkZ—K*Z,  Rer,)>0. given by

T2
Thus, the scattered pressure field consists of a superpo- [Upn,W,]= ?J [U(x),w(x)]exp —inox)dx. (21
sition of an infinite number of wave modes. For small fre- T2
quences[ 0<k*T/2<a/(1—sin6y)] only the lowest-order Since the velocity is vanishing on the rigid boundaries be-
mode is propagating; all the other modes describe wavessveen the openings, the function$x), w(x) are different
which decay exponentially with the distance to the plane from zero only along the apertures. Due to periodicity, it is
=0. In writing the solution(16) we considered also the Som- sufficient to determine them along the interval ,a).
merfeld radiation condition. The constais will be detem- The continuity of the velocity across the apertures and
ined by using the boundary conditions. In the case of thescreens yields also the relationships
?gi?t?euss fluid, these conditions are written by means of ve- UO(x,0)expl — ik* x sin o} + T+ (x,0) =Ti(x), 22)

To determine the representation formulas for the veloc-  w(x,0)exp{ —ik* x sin 6o} +W* (x,0)=W(x), (23
ity field we use Eq(lQ), w_here we |_ntrodl_Jce the forii6) valid along the whole axis. The relationshid®)—(23) allow
for the pressure. Taking into consideration also the above- . + + .

. L . us to determine the constan®s, and H, in terms of the
mentioned periodicity results in . L~ ~ n
Fourier coefficientsl, andw,, as

©

" iqoCcoSy+ k* sir? 6, OK*
WEx2)= 3wy (x,2), . igo cosfy—k* sir? 00,
T igo cOSy+k* sir? 6,
where ~ e~
_ —QoWp—ik*ugsingy 1
Ug (X,2) =iK* sin0,6P, exp{ik* (x sinfy*z cosby)} Po :iqocosﬁo+ K* Sir? g Sk*

Hi +_ ~ . 2 + .
N %exp{ikoxiqoz}, Hg =ik*Tgsin g+ 6k*2(1+ Pg)sir? 6,
° Hg =ik*Tg sin B+ ok* 2Py sir? 6, 249
Wo (X,2) = +ik* cosfyoPy exp{ik* (x siny=+ z cosfy)} 5 5
+ iQan_iknun

H Pr=———"", n#0,
tq—exp[ikoxlqoz}, 17 O(Ky—rn0n)
0
. + k20, W= iKnr 10U
. HE - B - . - B Hr?: nqn 2n n nqn I’], nio
u,;(x,z)=Wexp{lknx+qnz}+|kn5Pn— explik,x¥r,z}, Kr—n0n
n

To obtain the equations satisfied by the functioiis)

+ B n o _ + L andw(x), we impose the condition of continuity of the nor-
Wn (x,2)= = dn EXRIKnX T Anz} 1 OPy eXp{iknXF 11z} mal derivative of velocity along the aperture

W aoxo o @it(x0)
The constant$i have to be determined by the boundary 5, — €XPL—ik*Xxsinfo}+ — —
conditions. We have also denoted

+

Ju(x,0)
dn=k2—iw*/v, Req,)>0. =Ty v xe(aa, (25
We note that naturally the solution for velocity has beengw9(x,0) Wt (x,00 W (x,0)

decomposed into two parts: a propagating mode includingTeXp{—ik*XSin o} +
theP terms and a diffusive mode, driven by viscosity, includ-
ing theH terms. xe(—a,a). (26)

0z 0z '
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These “boundary relationships” will be associated with the

boundary conditions along the screens
u(x)=0, xe(a,b),
W(x)=0, xe(a,b).

Taking the second primitivéndefinite integral with re-
spect to thex variable of the relationship§25) and (26)

results in
_ X2 rn T " \
aUy= + _ explinwx
2 470 k2—r,qn (|nw)2
ad;
_ 2
= ——=X“+CcX+Cy, Xe(—a,a),
2T 1 0 ( )
_ X dv W
a3WO? - > exp{inwx}
n#0 k ran (|nw)
ad
X+C X+C s Xe(—a,a),
2T 1 0 ( )

wherecy, cq, €1, c} are arbitrary integration constants and
the constants,, a3, di, d3 are given by formulas

—i cosfy,
iqoCcosy+k* sir 6y

a1=

go/k*
iqoCcoSy+k* sir? 6y

=

c38k* T sin g, cosb,/a

gy cosfy+k* sir 6,

- —ic26q,T cosby/a
iqoCOSHy+ K* Sir? 6y

The asymptotic developments

M [no[ Kk*sing, n +Cl 1
K—rg, A A In[ A |nol
+0 !
Inw|?/’
v [nw| k*singy n +C3 1
K2—rng, A A [n| A |no
+0 !
Inw|?/’
where
Al k*2+iw* B_i(u*k*2
B v )’ - 2Av
C.-B 3k*?  jw* C.oB k*? Biw*
o 4 4y 3T 4 4y

also prove true.
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Sincel,, are the Fourier coefficients of a continuous
function, we have als@,=o(n" 1) and consequently

rn Uy, ‘ const

<
k2—r,0n (inwx)z‘ n?

Hence, the infinite series in formul27) is converging uni-
formly for xe[ —a,a]. According to propertyf) in Ref. 9
(or Ref. 10 the relationship27) can be differentiated term
by term any number of times and the formulas obtained this
way are valid as distribution@eneralized functions

The second derivative of relationship7) with respect
to thex variable can be written as

1 d? [nw|u,

A dx2 i (inw)?

explinwx}

k* sinf, d? n

A a2z I mw)2

explinwx}

E eXp[Ian}+aluo
N (. Inw| k*sindy n
70 | KG—rngn A A Inl
Cl 1 adl 0g
N |n | U, explinwx}= - xe(—a,a). (29

Since the last infinite series in this relationship is uniformly
convergent, its sum is a smooth function»oflong the in-
terval (—a,a). Let us denote

|nw| k* sinf, n
X) aq+ —
! r;o{k —rq, A A n|
G
A Tnal explinwx},
|nw| k* sinf, n
X) az+ - —
3 rgo{k —ry0n A A n|
-2 = explinaxd,
exp{inwx
A [nel

Introducing the expression of the Fourier coefficients, we
obtain

I [nw| k*sindy, n
k—rnqn A A n|

Ir(x)= aluo+2{

C1 1
A Tnal U, explinwx}
1 (a_ R
== u(x" )K7(x—x")dx".
TJ-a
The other infinite series will give the singular terms of Eq.
(29). We analyze now each of the singular terms. Thus, sub-

stituting again the Fourier coefficients results in
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up,
]13— >4 Tnw |exp[|nwx}
f explino(x—x")}
X') —————dx’
n#O T |n0)|

- cos{nw(x x)]

=—f U0 2

Cw(x—x")
2 sin 5 dx’. (30

1 +a_
== f_a u(x")log
Here, the formula

cog nwx)

Z —log| 2 sm—‘

For the first singular term ir{29), performing similar
transformations results in

d? [nw|U, d?I5(x)
L=— 2 ——expinox}=-
L X270 (inw)? Ainex)=——
d? 1 [+a_
) . u(x")loglw(x—x")|dx
d?> 1 [+a, I Cw(x—x")
+F_ _au(x)og smT
w(x—=x")|~ ,
— dx’.

The last integral in this formula is regular and the other one
can be written as a finite part. Finally, the first singular term

given in Ref. 11(formula 1.442 or Ref. 12 has been used. pecomes

Therefore
- lf+a~ l S o(X—=X") || @(X—=x")|" dx’
3= 7au(x)og sin 5 5 X
1 +a_
——f u(x")loglw(x—x")|dx’. (31
mJ)-a

2w(x—x’)
2

1 (ra, w?
ll:—;J:a u(x") - sin
[

/)2

(x x')?

The first integral in this relationship is regular and the secondn this formula

one has a weaklogarithmig singularity forx’ =x.
Similarly, the second singular term in E®9) becomes

. d? n inax)
— _explinox
27 ax2 i 1| (inw)? @
d i - oinw(x X1,
T odxw ). 2 n
Hence
3 w(X—x") 1
Io(x)= d—=—f U(x") cot 5 — dx’
i +a_
u(x")loglw(x—x")|dx’. (32

a7 dx
Again, the first integral in formul@32) is regular. The sec-
ond one can be written as

idj+a~,| ,d,_iJ+a~,dx’
P 7au(x)og|w(x—x)| X'=— 7aU(X)X_X,,
(33

and represents a finite pdudr principal valug integral (see
Refs. 13, 9, and 14 Finally, the second term in EQR9) has
the form

w(X—x") 1
—cot - -
2 X—X

Mm=%fan>

—f u(x)

2766 J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005

(34)

J+a~( N dx’ dJ x’
ux')y——=——
—a (X—X’)2 dX
d? +a_
=——f u(x")loglw(x—x")|dx,
dx?J-a

(39

is a finite part integral(see Refs. 13, 15, and 14
Bringing together all the above transformations, &9)
becomes

&

Cl +a"" ! ! !
—ﬁﬁau(x Yog|w(x—x")|dx

+ik*3in6’of+a~ L. dx’
A ,au(x)x—x’

(x X)2

1 &~ ’ R ’ ’ 1 ta_ ’
+T£au(x YKT(Xx—x")dx _ﬁﬁa u(x’)

o w? _zw(x—x’) 1 dx’

—sin X

4 2 (X—X’)Z

+|k* smeof . w(X—x") 1 dx

A —a u(x) co 2 X=X’ X

C, f+a~ o o(x—x")][o(x—x") 7ld ,

~ A _au(x)og sin—, 5 X
ad;

=—, Xe(—a,a). (36)

T
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Performing the same transformations with E88), a
similar equation results for the functiom(x)

dx’

(X—X’)2+

+a

J.

ik* sinf,
A

~ dx’
W(X)x—x

!

1 +a_
- ﬁﬁaw(x )

C3 +a"' ! ! !
—ﬁﬁaw(x Yoglw(x—x")|dx

1 ra
A

- aW(x YK3(x—x")dx —mf_aw(x )

y w? _zw(X—X’) 1 )

—sin -

4 2 (X_X’)z
ik* Sin00J+a~ o w(X—x") 1 dx
A 7aw(x ) Ecot 5 vy X
Cs f+a~ o Co(x—x")][o(x—x") _ld ,

A 7aw(x )log|| sin 5 5 X
ad

== xe(—a,a). (37

Equations(36) and (37) will be solved in Sec. V by using a
Galerkin-type method.

(za)=w(+a)=0 the equations can be transformed into
integro-differential equations with Cauchy-type singularities.
Numerical methods for solving such equations were devel-
oped by Multhopp-Kalandiy&, Kutt,*® and Dragos?®

Remark 1. These types of singular integral equations
involving second-order “poles” arise naturally in various
physical problem$**%2°21They are called ‘“integral equa-
tions with strong singularities” in some papers and “hyper-
singular integral equations” in other papers. Since in the
field of wave propagation and acoustics the last denomina-
tion is used more often, we adopted it also in the present
work.

Finally, we note that using a Rayleigh-type representa-
tion of velocity field, by means of a potential function
#(x,z) and a stream functions(x,z) the solution of the
viscous diffraction problem reduces to the same hypersingu-
lar integral equation$38) and (39). Hence, these equations
characterize the viscous diffraction problem by a grating and
are not the result of a particular approach.

V. REDUCTION OF THE HYPERSINGULAR INTEGRAL
EQUATIONS TO INFINITE SYSTEMS

Since there are numerical methods tailored specially fofPF ALGEBRAIC EQUATIONS

finite-part integrals, we shall write also a different form of

these equations. So, by using the finite-part definition for

more general functiondand Ref. 16, pp. 64—66, problem 5,
Egs.(36) and(37) can be written as

» fa U(x")dx’
2A J —asir?(w(x—x")/2)
ik* sing, fa~ , w(x—x’)d )
T 7au(x )cotT X
2C; (a _ Nloal2 si a)(x—x’)d ,
T oA 7au(x)og smT X
a~
+f U(x")Kf(x—x")dx'=ad, (39)
—a
w (a w(x")dx’
2A ) —asir?(w(x—x")/12)
ik*sinaOJa~ , cdx—XWd‘
A 7aw(x )cotT X
2C3Ja~ Noal2 si w(x—x’)d )
T WA 7aw(x)og smT X
a ~
+f W(x")KR(x—x")dx'=ads. (39
—a

Instead of using collocation methods for approximating
the solution of the singular integral equatiai@8) and (39),

we prefer a Galerkin-type approach based on a special basis
of the corresponding Hilbert space. The method takes advan-
tage of the form of integral equations by using some
spectral-type relationships, fast Fourier transform of some
smooth function, and summation of rapid convergent infinite
series.

A. Galerkin’s method for solving the integral
equations

In the spaceH ¥ —a,a) of functions continuous on
[ —a,a] with derivatives having singularities of order 1/2 at
extremities, we consider the basis

o

We represent the functiom(x) as

X
n arccosa) ] n=1,2,....

[

Uu):gglumgn

X
m aI’CCOSa) .

Notice that both integral equations have the same singu-

lar part. As the solutions are satisfying the conditians
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- _2¢
2 — S|r‘(m6 )oglw(x—x")|dx’
2ik* sin00f+asin(m0’)dx’ —2 (+asin(m@’)dx’
+ — |
wA —a X—X oA J_3 (X_X’)z
2 f*a_ Lot S e(x=X")
J . sin(mé") TSII’] T
1 2ik* smaof in(me’)
- _— sin(m
(X_X’)Z wA _
y ® tw(X—X’) 1 dx
ECO 2 X—x' X
a
+f sin(mé’ )Kf(x—x")dx’
—a
2C, o Cw(Xx—=x")
oA su‘(m )log|| sin 5
w(x—x")] 1
— dx'=ad;, xe(—a,a),

where we have denotell =arccosk'/a).
Applying the Galerkin’s methodesults in

mzl [SOt C1Sol U+ 2 [SRnt C1SR i+ REW U

dy

:Eap'l, p:1,2,

The singular terms are

-2 1 ds
S [
wa’A 0 (cosf—cosh’)
Jr2ik*sin00 1 va'w ds
waA ;2 )0 Jo cosf—cosé’’

S ———f f log|cosé—cosé’|dS,

pm

and the regular part contains the terms

OETNAE

ik* sin 00
A

1
smzz 72

1
otZ— —Hds, (40)

R _ 2 1waw| sinZ
T wA 2o Jo 0T
(41

1 a a
Rgnln)]:_j f sin(me”)sin(p#)KF(x—x")dx’ dx.
a’m?J-al-a

We have denoted=arccosg/a), and also
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dS=sin(m#’)sin(pd)sin’ sinedo do’,

wa
Z= 7(0050— cosd’).

Using formulas given in the Appendix results in

m ik* siné,

0 _
Som wa2A5p’m+m(5pm+l Sp+1m) (42
1 (5p,m_ 5p,m+2)/(m+1)
ng_4wA +(8p,m~ Spram)/(M—1), m#1,
(8p1— 8p9)/2—2 log(wal2)5,,, m=1
(43
@ J(anw)Jy(anw)
R(1)=—15 S iP~Mm P
pm— g4 p,1¢m,1 2 anw)z
r —
X{—Jr( ppem_"
I'nn KEn—r_nd-n
1+(—1)p+m< Cl)
_T Nw+—
1-(—pPpm
- Tk* sinép|. (44)

Finally, we obtain the infinite system of algebraic equa-
tions for determining the coefficients,

- d,
Z pm+s§m+clsR +RD U= 5= %1,

p=1,2,.... (45)

Similarly, we write

o)

W(x)= m§=:l W, Sin

X
m aI'CCOSa) ,

and the integral equatio(89) yields the infinite system of
algebraic equations for the coefficients,

- - ds
mzl [ S0+ CaSomt SR CaSRy Rpm]um—z— So1r
p=1,2,.... (46)
The coefficientsR(3) have the expression

mpZ

Jp(anw)Jy(anw)

(anw)?

J’_ L —
kr21_rnqn k2—n_r—ncl—n
1+(—1)P+m< cg)
—T Nw+

1—(—1)Prm

A k* sin 00]. (47)
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B. Numerical realization of the method

The systems of linear equatio(¥5) and(46) have good
properties from a computational point of view. Thus, the co-
efficients S}, S5, are given by explicit relationship&2)
and (43). The coefficientsS;,, Sf, are expressed by 2D
cosine Fourier transforms. The integrands in formul® 0.6 |
and (41) are smooth functions such that these integrals can
be computed efficiently by using the 2D discrete cosine™
transform function ofATLAB . Finally, the coefficient&R{}), 0.4 1
R(®) can be obtained directly by summing the infinite series
in formulas(44) and(47). By subtracting several terms, and
summing them separately, we have transformed the initial
infinite series into rapid convergent series.

In fact, by the approch used in the previous section, we o0
have turned the convolution operators in Fourier transform 0
domain; this transform converts the convolution to a product 2
“quasidiagonalizing” the operators. Thus, the strongly singu- 4.
lar operator contributes only on the main diagonal of the
system, the principal value integral has contributions on the 0.99
two diagonals next to the principal one, and the term con- 1
taining the logarithmic singularity contributes in the system ]
to coefficients lying on the principal diagonal and the four g7 |
closer to it. This is why the finite sections of the resulting ]
infinite systems of linear equations have relatively low con-  0.96 -
dition numbers and the series giving the functians), -

0.8

0.2

0.98 |

0.95

w(x) are rapidly convergent. ]
0.94
VI. SOUND TRANSMISSION FACTOR. NUMERICAL ]
RESULTS 0.93 -
The important element in this analysis is the modulus ] e e
of thesound transmission fact3f t=|P, /c3|, which shows O 2 4 6 & 1 12 14 16 18 20 22
“how much” of the incoming plane wave is passing through () d[um]

the grating. Thus, once the solutions of the SySté@ and FIG. 2. (&) Modulust of sound transmission factor versus slits’ width for

(46) are determined the func'Fioruz(x), w(X) Can_be introf periodic spacingv= 25, 50, 100, and 20@m, f=20 KHz, and incidence
duced in formula(21) to obtain the corresponding Fourier anglef,= /4. The viscous casé) Modulust of sound transmission factor

coefficients. Finally, the formulé24) provides the value of Vversus slits’ width for periodic spacing=25, 50, 100, and 20um, f
the modulus of sound transmission factor as =20 KHz, and incidence anglé,= 7/4. The nonviscous case.

t=|Ps /c2|— .q0w0+ik*uosi-n00 am ’
iqo coSy+ k* Sir? 8, 2(a+b)c2ok* |
(48) 1.05
In Fig. 2(@) we have plotted the modulusof sound 0.90
transmission factor versus slit widthfor various values of
the periodic spacingv by including the influence of viscos- 075
ity. All the calculations assumed a value @ for the angle ’
0. In Fig. 2b) the same problem was solved for the case 060

where the viscosity of the air is neglected. It is very clear
that, especially for very narrow slits, the viscosity of the air *~
causes significant attenuation of the transmission wave. The 0457
results of Fig. 2b) agree very wellthe first three digits are
the samg with those obtained by using the formulas pro- 030
vided in Refs. 3 and 4. Figure 3 shows again the dependenc
of modulust of sound transmission factor upahfor differ- 0.15 -
ent values of the incidence angig. , ,
These results indicate that, in a simplified model of the 0 2 4
screen, treated as a periodic array of slits in a substrate, the
openings in the screen should be on the order of at least 1. 3. Modulust of sound transmission factor versus slits’ widttior w
um in order to avoid excessive attenuation of the signal. =100um, f=20 KHz, and incidence angleg =5, 45, 70, and 85 deg.

6 8 10 12 14
d[pm]
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APPENDIX: SOME DEFINITE INTEGRALS

In the following, we evaluate some integrals used in Sec.

IV. Starting with the formul&®2*
1 cognarccox’)
J1—x'2

cognarccox)/n, n=1
= o (A1)

log|x—x'|dx’

- log 2, n=
we can write also

1
——f sin(n arccosx’)log|x—x’|dx’
mJ)-1

cogn—1)0 cogn+1)6

B 2(n—1) 2(n+1) !
B log2 cog26) B 1’ (A2)
2 4 B

where 6=arccox. The derivatives of relatioifA2), taking
into consideration the definition83) and(35), give

Jl sm(n arccos’)

——— dx'=cognh), n=1, (A3)
1 sm(n arccox’) B sin(no)
__f (X X)Z X—nw. (A4)

The change of integration variabté= cosé’ in the formulas
(A2), (A3), and(A4) gives

1 (=
- ;f sin(n@’)sin @’ log|cosf—cose’|do’
0

cogn—1)8 cogn+1)6

., n>1
2(n—1) 2(n+1)
= : (A5)
log2 cog26) _1
2 4
stm(ne )sing’ do p 1 A6
— I — =
cosf—cosh’ cogng), n=1, (A6)
7 sin(n@’)sin ¢’ sin(n@
L e
0 (cos@—cos@’)? siné

the last two integrals being considered singufarite-pard
integrals.

0

expliz cose} = _2_ J.(2)i"exp{ing}.

Using the orthogonality relationship of the complex expo-
nentials results in

f expliz cosplcogme)de=7i"J(2). (A8)
0
Then, we have

a .
f sin
—a

=af sin(pd)sind exp{inw cos}d o,
0

X
parccos; explinwx}dx

and, using Eq(A8) and some properties of Bessel's func-
tions, we finally obtain the formula

a .
J sin
—a
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